Timg giá trị nhỏ nhất của hàm số
\(y=\frac{3x}{2}+\frac{1}{x+1}\) với x>-1
Bài 1: Tìm a để đường thẳng y = ax + 4 song song với đường thẳng y = −3x−1.
Bài 2: Cho hai hàm số bậc nhất y = 2mx + 1 và y = (m−1)x + 3. Tìm các giá trị của m để đồ thị của chúng là hai đường thẳng song song.
Bài 3: Cho hai hàm số bậc nhất y = x + 3 và y = mx − 1. Tìm m để đồ thị của chúng cắt nhau tại điểm có hoành độ bằng 1.
Bài 4: Cho 2 hàm số bậc nhất y = 3x – 1 và y = 2mx + 1. Tìm m để đồ thị của chúng cắt nhau tại điểm có tung độ bằng 2.
Bài 5 : Cho hàm số y = ax + 2 . Tìm hệ số góc a biết đồ thị của hàm số đi qua điểm A(2; 4) . Vẽ
cho x và y là 2 số thực dương thỏa mãn: 3x+y≤4.
Tìm giá trị nhỏ nhất của A=1/x+1/√xy giúp mik với ạ=))
Tìm giá trị lớn nhất và giá trị nhỏ nhất của :
\(y=\frac{x^2+3x+5}{x^2+1}\)
Cho x,y,z là các số thực thỏa mãn \(y^2+yz+z^2=1-\frac{3x^2}{2}\). Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P= x+y+z
Tìm giá trị nhỏ nhất của biêu thức P =|3x|– 2|y|, với x và y là các số nguyên thỏa mãn 5x– 6y =7.
Bài 1: Cho hai số dương x, y thỏa mãn điều kiện 3x + y – 1 = 0 .
Tìm giá trị nhỏ nhất của biểu thức B = 3x2 + y2
Cho hàm số y=(3m-4)x\(^2\) với m\(\ne\)\(\dfrac{4}{3}\). Tìm các giá trị của tham số m để hàm số :
a) Đạt giá trị lớn nhất là 0
b) Đạt giá trị nhỏ nhất là 0