a, \(Min_M=6\Leftrightarrow x=1\)
b,\(Min_Q=2002\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
a) Để Mmin thì \(\left(x-1\right)^2\) đạt GTNN.
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow\) GTNN của \(\left(x-1\right)^2=0\)
Vậy GTNN của M = 0 + 6 = 6.
b) Để Qmin thì \(\left(x-1\right)^2+\left(y+3\right)^2\) đạt GTNN.
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\Leftrightarrow\) GTNN của \(\left(x-1\right)^2+\left(y+3\right)^2=0+0=0\)
Vậy GTNN của Q = 0 + 0 + 2002 = 2002.
\(M=\left(x-1\right)^2+6\ge6\)
Dấu = xảy ra khi x-1=0 <=> x=1
Vậy Min M = 6 <=> x=1