\(B=x^2-x+2=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Vậy \(B_{min}=\frac{7}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)
\(A=2x^2-3x+6=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)
\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{39}{16}\right]\ge\frac{39}{8}\)
Vậy \(A_{min}=\frac{39}{8}\Leftrightarrow x=\frac{3}{4}\)