\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để A có giá trị nhỏ nhất thì \(2-\frac{5}{3n+2}\)nhỏ nhất \(\Leftrightarrow\)\(\frac{5}{3n+2}\)lớn nhất \(\Leftrightarrow\)3n + 2 nhỏ nhất là 3n + 2 > 0 \(\Leftrightarrow\)3n + 2 = 1
\(\Rightarrow\)\(n=\frac{-1}{3}\)
Vây giá trị nhỏ nhất của A là : \(\frac{6.\left(\frac{-1}{3}\right)-1}{3.\left(\frac{-1}{3}\right)+2}=\frac{-3}{1}=-3\)