Theo BĐT cô - si ta có :
\(\left\{{}\begin{matrix}\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\sqrt{\dfrac{\left(x.y\right)^2}{\left(y.x\right)^2}}=2\\\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x.y}{y.x}}=2\end{matrix}\right.\)
\(\Rightarrow MIN_P=2-3.2+5=1\)
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+5\)
\(=\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}+\dfrac{y}{z}\right)-1\)
\(\ge0+2-1=1\)