\(A=x^2+y^2+xy-6x-6y+2\)
\(\Rightarrow4A=4x^2+4y^2+4xy-24x-24y+8\)
\(=\left(4x^2+4xy+y^2\right)+3y^2-24x-24y+8\)
\(=\left[\left(2x+y\right)^2-12\left(2x+y\right)+36\right]+3y^2-12y-28\)
\(=\left(2x+y-6\right)^2+3\left(y^2-4y+4\right)-40\)
\(=\left(2x+y-6\right)^2+3\left(y-2\right)^2-40\ge-40\)
\(\Rightarrow4A\ge-40\)
\(\Rightarrow A\ge-10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y-6=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=6-y\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
Vậy \(A_{min}=-10\Leftrightarrow x=y=2\)
P/S: cách giải trên gọi là cách chung riêng !