Ta có: \(A=\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}=\left(\frac{1}{x}-2\right)^2-3\ge3\left(\forall x\right)\)
\(\Rightarrow Min_A=-3\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Ta có: A =\(\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
Đặt 1/x = y
<=> \(A=1-4y+y^2\)
<=> A = \(\left(y^2-4y+4\right)-3\)
<=> A = \(\left(y-2\right)^2-3\)
Do (y - 2)2 \(\ge\)0 \(\forall\)y
<=> (y - 2)2 - 3 \(\ge\)-3 \(\forall\)y
Dấu "=" xảy ra <=> y - 2 = 0 <=> y = 2
<=> 1/x = 2 <=> x = 1/2
Vậy MinA = -3 khi x = 1/2