\(B = |5x-2| + | 5x -3|=|5x-2| +|3-5x| >=|5x-2+3-5x|=1 \)
\(A=x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\ge3\)
Vậy \(A_{min}=3\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(B=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
\(=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-3\right)^2}\)
\(=\left|5x-2\right|+\left|5x-3\right|\)
\(=\left|2-5x\right|+\left|5x-3\right|\ge\left|\left(2-5x\right)+\left(5x-3\right)\right|=\left|-1\right|=1\)
Vậy \(B_{min}=1\Leftrightarrow\left(2-5x\right)\left(5x-3\right)\ge0\)