a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
oOo Không đủ can đảm để oOo copy mà nói nhưu mk tự làm
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
Vậy \(A_{min}=0+2=2\)
b/Ta có:
\(B=x^2-20x+101\)
\(B=x\cdot x-10x-10x+10\cdot10+1\)
\(B=x\left(x-10\right)-10\left(x-10\right)+1\)
\(B=\left(x-10\right)\left(x-10\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
=> GTNN của \(\left(x-10\right)^2\)là 0
Vậy \(B_{min}=0+1=1\)
c/Ta có:
\(C=x^2-6x+11\)
\(C=x\cdot x-3x-3x+3\cdot3+2\)
\(C=x\left(x-3\right)-3\left(x-3\right)+2\)
\(C=\left(x-3\right)\left(x-3\right)+2\)
\(C=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(C_{min}=0+2=2\)
a, Ta có \(A=x^2-6x+11\)
\(A=x^2-2.x.3+3^2+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\) dấu = khi \(x-3=0\Leftrightarrow x=3\)
\(2>0\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\) dấu = khi \(x=3\)
\(\Rightarrow x^2-6x+11\ge2\) dấu = khi \(x=3\)
Vậy \(A_{min}=2\) khi \(x=3\)
b, Ta có \(B=x^2-20x+101\)
\(B=x^2-2.x.10+10^2+1\)
\(B=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\) dấu = khi \(x-10=0\Leftrightarrow x=10\)
\(1>0\)
\(\Rightarrow\left(x-10\right)^2+1\ge1\)dấu = khi \(x=10\)
\(\Rightarrow x^2-20x+101\ge1\)dấu = khi \(x=10\)
Vậy \(A_{min}=1\) khi \(x=10\)
d,Ta có \(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(D=\text{[}\left(x-1\right)\left(x+6\right)\text{]}.\text{[}\left(x+2\right)\left(x+3\right)\text{]}\)
\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(D=\left(x^2+5x\right)^2-6^2\)
\(D=\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\) dấu = khi \(x^2+5x=0\Leftrightarrow\left(x+5\right)x=0\Leftrightarrow\hept{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-5\end{cases}}}\)
\(\Rightarrow\left(x^2+5x\right)-36\ge-36\) dấu = khi \(\hept{\begin{cases}x=-5\\x=0\end{cases}}\)
Vậy \(D_{min}=-36\) khi \(\hept{\begin{cases}x=0\\x=-5\end{cases}}\)
e, Ta có \(E=x^2-2x+y^2+4y+8\)
\(E=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)
\(E=\left(x-1\right)^2+\left(y+2\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\) dấu = khi x=1
\(\left(y+2\right)^2\ge0\) dấu = khi \(y=-2\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\) dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy \(E_{min}=3\) dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(f,F=x^2-4x+y^2-8y+6\)
\(F=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Vì \(\left(x-2\right)^2\ge0\) dấu = khi \(x=2\)
\(\left(y-4\right)^2\ge0\) dấu = khi \(y=4\)
\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) dấu = khi \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(F_{min}=-14\) dấu = khi \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)