a) A = x2 - 3x + 5
A = x2 - 2.x.\(\dfrac{3}{2}\) + \(\dfrac{9}{4}\) + \(\dfrac{11}{4}\)
A = ( x - \(\dfrac{3}{2}\) )2 + \(\dfrac{11}{4}\)
Vì ( x - \(\dfrac{3}{2}\) )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( x - \(\dfrac{3}{2}\))2 + \(\dfrac{11}{4}\) \(\ge\) \(\dfrac{11}{4}\) với mọi x
\(\Rightarrow\) A \(\ge\) \(\dfrac{11}{4}\) với mọi x
Vậy min A = \(\dfrac{11}{4}\) \(\Leftrightarrow\) ( x - \(\dfrac{3}{2}\) )2 = 0
\(\Leftrightarrow\) x = \(\dfrac{3}{2}\)
d) D = ( x - 1)( x + 2)( x + 3 )( x + 6)
D = [( x - 1)( x + 6)] [( x + 2 )( x + 3)]
D = ( x2 + 6x - x - 6 )( x2 + 3x + 2x + 6 )
D = ( x2 + 5x - 6 )( x2 + 5x + 6)
D = ( x2 + 5x )2 - 36
Vì ( x2 + 5x )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( x2 + 5x )2 - 36 \(\ge\) - 36 với mọi x
\(\Rightarrow\) D \(\ge\) -36 với mọi x
Vậy min D = -36 \(\Leftrightarrow\) ( x2 + 5x )2 = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
c) C = x2 - 2x + y2 - 4y + 7
C = x2 - 2x + 1 + y2 - 4y + 4 + 2
C = ( x - 1 )2 + ( y - 2 )2 + 2
Vì ( x - 1 )2 \(\ge\) 0 với mọi x
( y - 2 )2 \(\ge0\) với mọi y
\(\Rightarrow\)( x - 1)2 + ( y - 2)2 + 2 \(\ge2\) với mọi x, y
\(\Rightarrow\) C \(\ge2\) với mọi x,y
Vậy min C = 2 \(\Leftrightarrow\) \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)