Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hghghghg

Tìm giá trị nhỏ nhất của :

A=x^2-2xy+6y^2-12x+2y+45

quách anh thư
14 tháng 2 2018 lúc 20:10

x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN = 4 khi (x;y) = {(7;1)}

Mai Anh
14 tháng 2 2018 lúc 20:10

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)

Love Scenario
31 tháng 3 2019 lúc 22:03

\(A=x^2-2xy+6y^2-12x+2y\)\(+45\)

 \(=x^2+y^2+36-2xy-12x\)\(+12y+5y^2-10y+5+4\)

 \(=\left(x-y-6\right)^2+5\left(y-1\right)^2\)\(+4\ge4\)

GTNN của A là 4 khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x-y=6\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)

Vậy BT A đạt giá trị nhỏ nhất là 4 tại x = 7 và y = 1


Các câu hỏi tương tự
Phạm Bảo Ngọc
Xem chi tiết
Nguyễn Hữu Đăng
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Trang Huyen Trinh
Xem chi tiết
Toàn Nguyễn Đức
Xem chi tiết
#𝒌𝒂𝒎𝒊ㅤ♪
Xem chi tiết
ERROR
Xem chi tiết
TFboys_Karry
Xem chi tiết
gấukoala
Xem chi tiết