\(A=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)
\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)
\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\) có GTNN là \(0\)
Dấu "=" xảy ra \(\Leftrightarrow x=1;y=1\)
A = ( 4x^2 + y^2 +9 + 4xy -6y -12x)+(x^2 -2x+1)
= (2x+y-3)^2 +(x-1)^2
Ta có: (2x+y-3)^2 +(x-1)^2 >=0 với mọi x,y
Dấu "=" xảy ra khi: 2x+y-3 =0 và x-1=0
2.1 + y-3 =0 và x=1
-1+y=0 và x=1
y=1 và x=1
Vậy giá trị nhỏ nhất của A là 0 tại x=1 và y=1