a) Ta có :
\(A=5x^2-10x+3\)
\(A=5\times\left(x^2-2x+1\right)-2\)
\(A=5\times\left(x-1\right)^2-2\)
Mà \(5\times\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-2\)
Dấu "=" xảy ra khi:
\(x-1=0\Leftrightarrow x=1\)
Vậy \(MinA=-2\Leftrightarrow x-1\)
b)
\(B=2x^2+8x+y^2-10y+43\)
\(B=2\times\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)
\(B=2\times\left(x+2\right)^2+\left(y-5\right)^2+10\)
Mà \(\left(x+2\right)^2\ge0\forall x\Leftrightarrow2\times\left(x+2\right)^2\ge0\forall x\)
\(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow B\ge10\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Vậy \(MinB=10\Leftrightarrow\left(x;y\right)=\left(-2;5\right)\)