\(A=\frac{2n+7}{n+1}\)
\(A=\frac{2n+2+5}{n+1}\)
\(A=\frac{2\left(n+1\right)}{n+1}+\frac{5}{n+1}\)
\(A=2+\frac{5}{n+1}\)
Vì 2 là số nguyên nên để A nguyên thì: \(\frac{5}{n+1}\)phải nguyên
=> n + 1 thuộc Ư(5)
=> n + 1 thuộc {1,5,-1,-5}
=> n thuộc {0,4,-2,-6}
Điều kiện để A xác định là n khác -1
\(A=\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2n+2}{n+1}+\frac{5}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{5}{n+1}=2+\frac{5}{n+1}\)
Để A đạt giá trị nguyên thì \(\frac{5}{n+1}\)cũng nguyên
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
Kết hợp với điều kiện xác định thì \(n\in\left\{0;-2;4;-6\right\}\)để A nguyên