Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Rarah Venislan

Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:

a) \(x^2+x+1\)                   b) \(2+x-x^2\)               c)   \(x^2-4x+1\)

d) \(4x^2+4x+11\)          e) \(3x^2-6x+1\)          f) \(x^2-2x+y^2-4y+6\)

g) \(h\left(h+1\right)\left(h+2\right)\left(h+3\right)\)

Mình đang cần lời giải (chi tiết). Xin hãy giúp mình. Cảm ơn nhiều

Minh Anh
17 tháng 10 2016 lúc 12:14

a) \(A=x^2+x+1\)

\(A=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_A=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

b) \(B=2+x-x^2\)

\(B=\frac{9}{4}-x^2+x-\frac{1}{4}\)

\(B=\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\)

Có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{9}{4}\)

Dấu = xảy ra khi: \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy: \(Max_B=\frac{9}{4}\) tại \(x=\frac{1}{2}\)

c) \(C=x^2-4x+1\)

\(C=x^2-4x+4-3\)

\(C=\left(x-2\right)^2-3\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-3\ge-3\)

Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Min_C=-3\) tại \(x=2\)

Mấy bài kia tương tự, riêng bài g

g) \(G=h\left(h+1\right)\left(h+2\right)\left(h+3\right)\)

\(G=\left(h^2+3h\right)\left(h^2+3h+2\right)\)

Đặt: \(t=h^2+3h+1\)

\(\Leftrightarrow\hept{\begin{cases}h^2+3h=t-1\\h^2+3h+2=t+1\end{cases}}\)

\(\Leftrightarrow\left(h^2+3h\right)\left(h^2+3h+2\right)=\left(t-1\right)\left(t+1\right)=t^2-1=\left(h^2+3h+1\right)^2-1\)

Có: \(\left(h^2+3h+1\right)^2\ge0\Rightarrow\left(h^2+3h+1\right)^2-1\ge-1\)

Dấu = xảy ra khi: \(\left(h^2+3h+1\right)^2=0\Rightarrow h^2+3h+1=0\Rightarrow\left(h+\frac{3}{2}\right)^2-\frac{5}{4}=0\Rightarrow\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\)

Vậy: \(Min_G=-1\) tại \(\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\) 


Các câu hỏi tương tự
nguyễn thị thu giang
Xem chi tiết
Ai William
Xem chi tiết
Lê Đăng Khoa
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Toan Nguyen
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết
~ ~ ~Bim~ ~ ~♌ Leo ♌~...
Xem chi tiết
trần thị hoàng yến
Xem chi tiết
ThanhNghiem
Xem chi tiết