\(E=\frac{-x^2+x-10}{x^2-2x+1}=\frac{-\left(x^2-2x+1\right)-x+1-10}{\left(x-1\right)^2}\)
\(=\frac{-\left(x-1\right)^2}{\left(x-1\right)^2}+\frac{-\left(x-1\right)}{\left(x-1\right)^2}-\frac{10}{\left(x-1\right)^2}\)
\(=-1-\frac{1}{x-1}-\frac{10}{\left(x-1\right)^2}\)
Đặt \(t=\frac{1}{x-1}\)
\(\Rightarrow E=-10t^2-t-1=-10\left(t^2+\frac{1}{10}t+\frac{1}{10}\right)=-10\left[\left(t+\frac{1}{20}\right)^2+\frac{39}{400}\right]\)
\(=-10\left(t+\frac{1}{20}\right)^2-\frac{39}{40}\le-\frac{39}{40}\forall t\)
Vậy GTLN của \(E=-\frac{39}{40}\Leftrightarrow t=-\frac{1}{20}\)
\(\Leftrightarrow\frac{1}{x-1}=-\frac{1}{20}\)
\(\Leftrightarrow x-1=-20\)
\(\Leftrightarrow x=-19\)