Ta có: \(E=1+\frac{2xy}{x^2-xy+y^2}\le1+\frac{2xy}{2xy-xy}=3\)
Dấu "=" xảy ra <=> x = y
Vậy GTLN của E là 3 tại x = y.
Ta có: \(E=1+\frac{2xy}{x^2-xy+y^2}\le1+\frac{2xy}{2xy-xy}=3\)
Dấu "=" xảy ra <=> x = y
Vậy GTLN của E là 3 tại x = y.
Cho biểu thức :
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)
a) Rút gọn A và tìm giá trị x,y để A = 0
b ) tìm giá trị x,y nguyên thỏa mãn \(A=x^3+xy+x+y+1\)
tiếp tục nạ !!!
Cho biểu thức \(y=\frac{x}{\left(x+2004\right)^2}x\ne0\)
Tìm x để giá trị biểu thức lớn nhất .Tìm giá trị đó
Cho x,y là 2 số dương thỏa mãn xy=1. Tìm giá trị lớn nhất của biểu thức P=\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho x\(\ge\)xy+1. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{xy}{x^2+y^2}\)
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
cho x và y là các số dương thỏa mãn xy=1. tìm giá trị lớn nhất của biểu thức sau: \(P=\frac{x}{x^4+y^2}+\frac{y}{y^4+x^2}\)
Cho \(\hept{\begin{cases}xyz=2\\2+x+xy\ne0\end{cases}}\). Tính giá trị B=\(\frac{1}{1+y+yz}+\frac{2}{2+2z+xy}+\frac{2}{x+2+xy}\)
tìm giá trị nhỏ nhất của biểu thức:
\(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)