Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Không Bít

tìm giá trị lớn nhất của biểu thức A= -4x^2 + 4xy - 2y^2 +2y +3

Kudo Shinichi
24 tháng 11 2019 lúc 17:17

\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)

\(A=4-\left(2x-y\right)^2-\left(y-1\right)^2\le4\)

\(A_{max}=4\) khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Nguyễn Thùy Trang ( team...
24 tháng 11 2019 lúc 17:22

\(-4x^2+4xy-2y^2+2y+3\)

\(=-\left(4x^2+4xy+y^2\right)-\left(y^2-2y+1\right)+4\)

\(=-\left(2x+y\right)^2-\left(y-1\right)^2+4\)

Ta có \(\left(2x+y\right)^2\ge0\)  \(\forall x,y\) \(;\left(y-1\right)^2\ge0\)  \(\forall y\)

=> \(\left(2x+y\right)^2+\left(y-1\right)^2\ge0\)   \(\forall x,y\)

=> \(-\left(2x+y\right)^2-\left(y-1\right)^2\le0\)  \(\forall x,y\)

=> \(-\left(2x+y\right)-\left(y-1\right)^2+4\le4\)  \(\forall x,y\)

\(MaxA=4\Leftrightarrow\hept{\begin{cases}\left(y-1\right)^2=0\\\left(2x+y\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}y-1=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-\frac{1}{2}\end{cases}}}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Chu Văn Huy
Xem chi tiết
Nguyễn Bá Thúc Hào
Xem chi tiết
lồn
Xem chi tiết
nguyễn mai thùy trâm
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
milo và lulu
Xem chi tiết
....
Xem chi tiết
Nguyễn Thành Phát
Xem chi tiết
Vũ Xuân Phương
Xem chi tiết