\(A=2018+2\left(x^2+1\right)^{2018}\)
Để A lớn nhất => 2(x2+1)2018 nhỏ nhất \(\left(1\right)\)
Ta thấy:
\(2\left(x^2+1\right)^{2018}\ge0\)\(\left(2\right)\)
Từ (1); (2)\(\Rightarrow\left(x^2+1\right)^{2018}=0\) \(\Rightarrow x^2+1=0\)
\(\Rightarrow x^2=-1\)(LOẠI)
Nếu (x2 + 1)2018 = 1
\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=-1\left(L\right)\end{cases}}\)
\(\Leftrightarrow x=0\)(TM)
\(\Rightarrow A=2018-2.1=2016\)
Vậy GTLN của A là 2016 tại x = 0