a) x2 + y2 + 2x - 4y + 5 = 0
<=> ( x2 + 2x +1 ) + ( y2 - 4y + 4 ) = 0
<=> ( x + 1 )2 + ( y - 2 ) 2 = 0
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
b) x2 + 4y2 - x + 4y + \(\frac{5}{4}\)=0
<=> ( x2 - 2x + \(\frac{1}{4}\)) + ( 4y2 + 4y + 1 ) = 0
<=> ( x - \(\frac{1}{2}\))2 + ( 2y + 1 )2 = 0
<=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\2y+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\2y=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)