a) Tìm các giá trị nguyên của \(x\) để biểu thức M=\(\dfrac{8x+1}{4x-1}\)nhận giá trị nguyên
b) Tìm giá trị nguyên của biến \(x\) để biểu thức \(A=\dfrac{5}{4-x}\)có giá trị lớn nhất
c) Tìm giá trị nguyên của biến \(x\) để biểu thức \(B=\dfrac{8-x}{x-3}\)có giá trị nhỏ nhất
(Hơi khó mọi người giúp mình với ạ)
a) Cho 2x - 5y = 0. Tìm min của biểu thức: \(x^2+y^2\)
b)Tính giá trị của biểu thức: \(A=5y^4+7x-2z^5\)tại \(\left(x^2-1\right)+\left(y-z\right)^2=16\)
Tính giá trị của biểu thức sau:
c) \(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\) tại \(x+y+1=0\)
Tìm giá trị nhỏ nhất của biểu thức sau: M = \(\dfrac{-1}{2\left(x+3\right)^2+1}\)
Cho biểu thức : K=\(\dfrac{16}{\left(x^2+2\right)^2+4}\)
a)so sánh giá trị của biểu thức K tại x=a và x= -a với mọi a thuộc R
b)tìm giá trị nhỏ nhất của biểu thức K
1Tínhgiá trị của biểu thứcbiết \(x=\frac{y}{2}=\frac{z}{3}\) \(E=\frac{x+2y+3z}{x+2y-3z}\) 2Tìm các giá trị của biến để các biểu thức sau có giá trị bằng 0: a) \(x^2-9\) b)\(\left(x+2013\right)^2+\left|y-2014\right|\)
c)\(\left|2x-4\right|-1\) d)\(\left(x-11\right)^2+\left(y+12\right)^2\)
3. Tìm các số x,y,z,t biết: \(x+y=6;y+z=9;z+t=12;t+y=11\)
43. Cho A = 2x(x + 1)(x-3)-(2x-1)(3x-1) + 3(3x² + x + 1).
a) Rút gọn biểu thức A.
b) Tìm thương và dư khi chia A cho 2x − 1.
c) Tìm giá trị nguyên của x để giá trị của biểu thức A chia hết cho giá trị của biểu thức 2x-1.
Bài 1: Tính giá trị các biểu thức sau tại: |x| = \(\dfrac {1}{3}\); |y| = 1
a) A= 2x2 - 3x + 5 b) B= 2x2 - 3xy + y2
Bài 2: Tính giá trị các biểu thức A sau biết x + y +1 = 0:
A= x (x + y) - y2 (x + y) + x2 - y2 + 2 (x + y) + 3
Bài 3: Cho x.y.z = 2 và x + y + z = 0. Tính giá trị biểu thức:
A= (x + y)(y + z)(z + x)
Bài 4: Tìm các giá trị của các biến để các biểu thức sau có giá trị bằng 0:
a) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) b) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) c) |3x + 2\(\dfrac {1}{3}\)| + |y + 2| = 0 d) (x - 2)2 + (2x - y + 1)2 = 0
a, tìm giá trị lớn nhất của biểu thức A=\(\dfrac{3}{\left(x+2\right)^2+4}\)
b, tìm giá trị nhỏ nhất của biểu thức B=\(\left(x+1\right)^2+\left(y+3\right)^2+1\)