-5 - x - x2
=> -(x2 + x) - 5
=> \(-\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\dfrac{19}{4}\)
=> \(-\left(x+\dfrac{1}{2}\right)^2-\dfrac{19}{4}\)
Ta thấy: \(-\left(x+\dfrac{1}{2}\right)^2\le0\forall x\in R\)
=> \(-\left(x+\dfrac{1}{2}\right)^2-5\le-5\)
=> Đa thức -5 - x - x2 đạt GTLN là -5 <=> \(x+\dfrac{1}{2}=0\)<=>x = \(-\dfrac{1}{2}\)
Vậy.
`-5-x-(x^2)=-(x^2+x+5)=-(x+1/2)^2-19/4`
Vì `-(x+1/2)^2 <= 0 AA x`
`<=>-(x+1/2)^2-19/4 <= -19/4 AA x`
`=>Max =-19/4`
Dấu "`=`" xảy ra `<=>x=-1/2`