Ta có: \(3^{2003}=\left(3^3\right)^{667}.3^2=27^{667}.3^2\)
Mà \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1^{667}\left(mod13\right)\equiv1\left(mod13\right)\)
\(\Rightarrow27^{667}.3^2\equiv1.3^2\left(mod13\right)\equiv9\left(mod13\right)\)
Vậy \(3^{2003}\) chia 13 dư 9.
tưởng đồng dư thức đại học ms học mà nhỉ