Cho tứ giác ABCD nội tiếp đường tròn (O;R). Gọi I là giao của AC và BD. (I khác O). Các điểm A', B', C' D' lần lượt trên đoạn thẳng IA,IB,IC,ID dao cho IA'/IA=IB'/IB=IC'/IC=ID'/ID. CMR A', B', C', D' cùng thuộc một đường tròn. Tính bán kính của đường tròn đó theo R
Cho tam giác ABC goi i la điểm thỏa mãn ĐK iA + 2iB + 3iC =o tìm i
cho (I;r) nội tiếp tam giác ABC. CMR: IA+IB+IC > 6r
Cho tam giác ABC, trên các cạnh BC, CA, AB lần lượt lấy các điểm D, E, F (khác các đỉnh của tam giác) sao cho AD, BE, CF cắt nhau tại I. Chứng minh rằng:
\(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)
trong mặt phẳng tọa độ Oxy cho điểm I(2;1). tìm tọa độ các điểm A , B trên Ox và Oy sao cho dộ dài IA + IB+AB nhỏ nhất
Cho tứ giác ABCD nội tiếp trong đường tròn (O; R) sao cho hai cạnh AB và CD kéo dài cắt nhau tại
M. Gọi I là giao điểm của AC và BD.
1. Chứng minh rằng MA. MB = MC. MD và IA. IC = IB. ID
2. Kẻ cát tuyến MEF đi qua O (E nằm giữa M, F). Chứng minh: MA. MB = ME. MF = OM2 – R2.
3. Kẻ cát tuyến IPQ đi qua O. Chứng minh: IA. IC = IP. IQ = R2 – OI2.
1, Cho hình bình hành ABCD tâm O. CMR:
Với I bất kỳ thì \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=4\overrightarrow{IO}\)
2, Cho tứ giác ABCD. Gọi I,J là trung điểm của AC và BD.Tính:
\(|\overrightarrow{IB}+\overrightarrow{ID}+\overrightarrow{JA}+\overrightarrow{JC}|.\)
Cho tam giác ABC, I thuộc miền trong tam giác ABC, biết IA=5cm, IB=2cm, IC=5cm, AB=4cm, AC=6cm
Tính góc BAC
.cho I là tâm đường tròn nội tiếp tam giác ABC có diên tích S và nửa chu vi p chứng minh IA+IB+IC ≥6r