Lời giải:
Giả sử đa thức cần tìm là $f(x)=ax^2+bx+c$
Cho $x=0$:
$f(0)-f(-1)=0\Leftrightarrow c-(a-b+c)=0\Leftrightarrow -a+b=0(1)$
Cho $x=1$:
$f(1)-f(0)=1\Leftrightarrow a+b+c-c=1\Leftrightarrow a+b=1(2)$
Từ $(1);(2)\Rightarrow a=b=\frac{1}{2}$
Vậy $f(x)=\frac{1}{2}x^2+\frac{1}{2}x+c$ với $c$ là số thực bất kỳ.
Áp dụng tính tổng:
$f(1)-f(0)=1$
$f(2)-f(1)=2$
$f(3)-f(2)=3$
....
$f(n)-f(n-1)=n$
Cộng theo vế:
$\Rightarrow f(n)-f(0)=1+2+3+..+n$
$\Leftrightarrow \frac{1}{2}n^2+\frac{1}{2}n+c-c=S$
$\Leftrightarrow \frac{n(n+1)}{2}=S$
Lời giải:
Giả sử đa thức cần tìm là $f(x)=ax^2+bx+c$
Cho $x=0$:
$f(0)-f(-1)=0\Leftrightarrow c-(a-b+c)=0\Leftrightarrow -a+b=0(1)$
Cho $x=1$:
$f(1)-f(0)=1\Leftrightarrow a+b+c-c=1\Leftrightarrow a+b=1(2)$
Từ $(1);(2)\Rightarrow a=b=\frac{1}{2}$
Vậy $f(x)=\frac{1}{2}x^2+\frac{1}{2}x+c$ với $c$ là số thực bất kỳ.
Áp dụng tính tổng:
$f(1)-f(0)=1$
$f(2)-f(1)=2$
$f(3)-f(2)=3$
....
$f(n)-f(n-1)=n$
Cộng theo vế:
$\Rightarrow f(n)-f(0)=1+2+3+..+n$
$\Leftrightarrow \frac{1}{2}n^2+\frac{1}{2}n+c-c=S$
$\Leftrightarrow \frac{n(n+1)}{2}=S$