Vế phải
\(\overline{b0a}-\overline{ab}=\)\(100b+a-10-b=\)\(99b-9a\)
Vế trái
\(\overline{ab}-\overline{ba}=10a+b-10-b=9a-9b\)
Theo bài cho,ta có
\(9a-9b=99b-9a\)
\(\Leftrightarrow9(a-b)=9(11b-a)\)
\(\Leftrightarrow a-b=11b-a\)
\(\Leftrightarrow a-b-11b+a=0\)
\(\Leftrightarrow2a-12b=0\)
\(\Leftrightarrow a-6b=0\)
\(\Leftrightarrow a=6b\)
\(\Rightarrow a=6;b=1\)
Vậy \(a=6;b=1\)