Theo dãy tỉ số bằng nhau \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}=\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)
\(\Rightarrow\frac{5b-3c}{2}=\frac{-5b+3c}{17}=\frac{5b-3c}{17}\) <=> 5b - 3c = 0 => \(b=\frac{3}{5}c;a=\frac{2}{5}c\)
Lại có a + b + c = -50 => \(\frac{2}{5}c+\frac{3}{5}c+c=-50\) => 2c = -50 => c = -25
Do đó \(a=\frac{2}{5}.\left(-25\right)=-10\) ; \(b=\frac{3}{5}.\left(-25\right)=-15\)
Vậy a = -10 ; b = -15 và c = -25
