<=>4x2+8xy+4y2 +x2-2x+1+y2+2y+1=0
<=>(2x+2y)2+(x-1)2+(y+1)2=0
<=>(2x+2y)2=0 và (x-1)2=0 và (y+1)2=0
*(x-1)2=0
<=> x-1=0
<=>x=1
*(y+1)2
<=> y+1=0
<=> y=-1
Vậy x=1;y= -1
5x^2+5y^2+8xy-2x+2y+2 = 0
<=>4x^2 + 8xy + 4y^2 + x^2 - 2x + 1 + y^2 + 2y + 1 = 0
<=> 4(x + y)^2 + (x - 1)^2 + (y + 1)^2 = 0 (1)
mà 4(x + y)^2 >= 0;(x - 1)^2 >=0; (y + 1)^2 >= 0
=> Để (1) có nghiệm thì đồng thời x + y = 0; x - 1 = 0; y + 1 = 0
<=> x = 1, y = -1.