Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Lê Dung

Tìm các số x,y,z, biết:

a,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}vàx-y+z=-15\)

b,\(\frac{x}{4}=\frac{9}{3}=\frac{z}{9}vàx-3y+4z=62\)

c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}và2x+5y-2z=100\)

Lê Anh Thư
23 tháng 8 2015 lúc 15:48

Theo đề ta có:

\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)

=>  \(\frac{x}{9}=\frac{y}{7};\frac{y}{7}=\frac{z}{3}\)

Hay: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)

=> \(\frac{x}{9}=-3\)

  \(\frac{y}{7}=-3\)

\(\frac{z}{3}=-3\)

=> x = -27

  y = -21

x= -9

Bạn kiểm tra lại thử giúp mình nha! mấy bài sau bạn làm tương tự, nhớ tick đúng cho mình nha! Cảm ơn bạn!

Pro Super
29 tháng 8 2018 lúc 19:59

eryju74hdeueuihhu

๖²⁴ʱんuリ イú❄✎﹏
5 tháng 3 2020 lúc 9:12

Theo đề ra ta cs

\(+,\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\)(1)

\(+,\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

ADTC dãy tỉ số bằng nhau ta cs 

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-3\\\frac{y}{7}=-3\\\frac{z}{3}=-3\end{cases}\Rightarrow\hept{\begin{cases}x=-27\\y=-21\\z=-9\end{cases}}}\)

Khách vãng lai đã xóa
Napkin ( Fire Smoke Team...
5 tháng 3 2020 lúc 13:45

\(a,\)Theo đề ra ta có :

\(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}=>\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}=>\frac{y}{7}=\frac{z}{3}\end{cases}=>\frac{x}{9}=\frac{y}{7}=\frac{z}{3}}\)

Đặt \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=k\)

\(=>\hept{\begin{cases}\frac{x}{9}=k=>x=9k\\\frac{y}{7}=k=>y=7k\\\frac{z}{3}=k=>z=3k\end{cases}}\)

Thay vào bài ta có : \(x-y+z=-15\)

\(=>9k-7k+3k=-15\)

\(=>5k=-15\)

\(=>k=\frac{-15}{5}=-3\)

Nên : \(\hept{\begin{cases}x=9k=9.\left(-3\right)=-27\\y=7k=7.\left(-3\right)=-21\\z=3k=3.\left(-3\right)=-9\end{cases}}\)

Vậy ,,,

\(b,\)Theo bài ra ta có : \(\hept{\begin{cases}\frac{x}{4}=\frac{9}{3}=>x=3.4=12\\\frac{z}{9}=\frac{9}{3}=>x=3.9=27\end{cases}}\)

Thay vào ta có : \(x-3y+4z=62\)

\(=>12-3y+108=62\)

\(=>-3y=62-108-12=-52\)

\(=>y=\frac{52}{3}\)

Vậy ,,,

\(c,\)Theo bài ra ta có : 

\(\hept{\begin{cases}\frac{x}{y}=\frac{7}{20}=>\frac{x}{7}=\frac{y}{20}\\\frac{y}{z}=\frac{5}{8}=>\frac{y}{20}=\frac{z}{32}\end{cases}=>\frac{x}{7}=\frac{y}{20}=\frac{z}{32}}\)

Đặt : \(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=k\)

\(=>\hept{\begin{cases}\frac{x}{7}=k=>x=7k\\\frac{y}{20}=k=>y=20k\\\frac{z}{32}=k=>z=32k\end{cases}}\)

Thay vào ta có : \(2x+5y-2z=100\)

\(=>14k+100k-64k=100\)

\(=>50k=100\)

\(=>k=\frac{1}{2}\)

Nên : \(\hept{\begin{cases}x=7k=7.\frac{1}{2}=\frac{7}{2}\\y=20k=20.\frac{1}{2}=10\\z=32k=32.\frac{1}{2}=16\end{cases}}\)

vậy ,,,

Khách vãng lai đã xóa

Các câu hỏi tương tự
Thảo Vi
Xem chi tiết
Nguyễn Đức Minh
Xem chi tiết
Lệ Mỹ
Xem chi tiết
Thuong
Xem chi tiết
Thảo Vi
Xem chi tiết
Hoàng Mai hương
Xem chi tiết
Đặng nguyễn quỳnh chi
Xem chi tiết
Nguyễn Hữu Cường
Xem chi tiết
Dong Van Hieu
Xem chi tiết