bài lớp mấy vậy nhìn nó khó khó
bài lớp mấy vậy nhìn nó khó khó
cho x,y thoả mãn \(\left(x+\sqrt{x^2+2011}\right)\left(y+\sqrt{y^2+2011}\right)=2011\). Tính x+y
\(\left\{{}\begin{matrix}x+\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\)
1. Tìm các số nguyên m để hệ có nghiệm (x;y) là số nguyên
2. Tìm m để nghiệm hệ thỏa mãn \(x^2+y^2=0,25\)
giả sử x, y là các số thực dương thoả mãn điều kiện \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\). tìm giá trị nhỏ nhất của biểu thức \(P=\frac{x^2}{y}+\frac{y^2}{x}\)
Cho x và y là các số dương thoả mãn \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)
Tính giá trị của biểu thức: \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Cho các số thực dương x,y,z thoả mãn: \(\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{z}-\sqrt{x}\right)^3=0\)
Tính T= \(T=\left(\sqrt{x}-\sqrt{y}\right)^{2013}+\left(\sqrt{y}-\sqrt{z}\right)^{2013}+\left(\sqrt{z}-\sqrt{x}\right)^{2013}\)
Cho các số x,y thỏa mãn điều kiện \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Chứng minh rằng:\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Tìm các số nguyên dương x,y thoả mãn \(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)
Cho x,y thoả mãn \(\left(\sqrt{x^2+1}-x\right)\)\(\left(\sqrt{y^2+1}-y\right)\)=1
CMR: x+y=0