\(\left(x-2\right)\left(y+1\right)=-2\\ -2=1.\left(-2\right)=2.\left(-1\right)\)
Vì `y in NN` nên `y + 1 <= 1`
`=>` \(\left[ \begin{array}{l}\begin{cases}x-2 = -2\\ y+1 = 1\end{cases}\\\begin{cases}x-2 = 1\\ y+1 = -2\end{cases}\\ \begin{cases}x-2 = 2\\ y+1 = -1\end{cases}\\\begin{cases}x-2 = -1\\ y+1 = 2\end{cases}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}\begin{cases}x = 0\\ y = 0\end{cases}\\\begin{cases}x = 3\\ y = -3\end{cases} (ktm)\\ \begin{cases}x = 4\\ y = -2\end{cases} (ktm)\\\begin{cases}x = 1\\ y = 1\end{cases}\end{array} \right.\)
Vậy `(x;y)={(0;0) ; (1;1)}`