Giả sử \(m\ge n\).
Ta có: \(2^{2m}+2^{2n}=4^m+4^n=4^n\left(4^{m-n}+1\right)\).
Đặt \(4^{m-n}+1=l^2\Leftrightarrow4^{m-n}=\left(l-1\right)\left(l+1\right)\)
Dễ thấy với các trường hợp của \(m-n\)thì không có \(l\)thỏa mãn.
Vậy phương trình vô nghiệm.
Bạn giải chi tiết hợn được không?
Mình giải chi tiết hơn đoạn "Dễ thấy".
\(4^{m-n}=\left(l-1\right)\left(l+1\right)\)
- \(m-n=0\): \(\left(l-1\right)\left(l+1\right)=1\)(không có nghiệm nguyên)
- \(m-n=1\): \(\left(l-1\right)\left(l+1\right)=4\)(không có nghiệm nguyên)
- \(m-n>1\): Do \(l-1\)và \(l+1\)là hai số tự nhiên cùng tính chẵn lẻ liên tiếp nên tích của chúng không là lũy thừa của \(4\).