Ta có :\(3a+5b=8c\)
\(\Leftrightarrow3a-3b=8c-8b\)
\(\Leftrightarrow3\left(a-b\right)=8\left(c-b\right)\)
Do đó : \(3\left(a-b\right)⋮8\)
Mà : \(\left(3,8\right)=1\)
\(\Rightarrow a-b⋮8\) ( * )
Do \(a\ne b\)
\(\Rightarrow0< a-b< 9\) ( ** )
Từ ( * ) ; ( ** )
\(\Rightarrow a-b\in\left\{8;-8\right\}\)
+) \(a-b=8\)
\(\Rightarrow c-b=3\)
\(\Rightarrow a=8;b=0;c=3\) hoặc \(a=9;b=1;c=4\)
+) \(a-b=-8\)
\(\Rightarrow c-b=-3\)
\(\Rightarrow a=1;b=9;c=6\)
Vậy tất cả có ba số thỏa mãn bài toán: \(803;914;196\)