Tìm các số x,y,z thỏa mãn \(x^2\)+\(y^2\)+ 25\(z^2\)= 6xz + 8yz và 3\(x^2\)+\(2y^2\)+\(z^2\)=240
tìm tất cả các cặp số nguyên x,y,z thỏa mãn x2+4y2+z2<2xy+2y-2z
1)Tìm tất cả các cặp số nguyên x,y thỏa mãn : x2=y(y+1)(y+2)(y+3)
2)Cho các số nguyên x,y,z thỏa mãn S=x+2y+3z+2016 và P=(x+2015)5+(2y-2016)5+(3z+2017)5
Mk đang cần gấp . Mơn mấy thím trc
Tìm các số nguyên x,y,z thỏa mãn :
x2+y2+z2+2 < 2(x + y+ z)
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
Tìm các số nguyên x , y , z thỏa mãn :
x2 + y2 + z2 + 2 < 2 ( x + y + z )
Bài 1 : Cho x,y,z đôi một khác nhau và x+y+z=0.
Tính giá trị của biểu thức \(A=\frac{x^2y+2xz^2-xy^2-2yz^2}{2xy^2+2yz^2+2zx^2+3xyz}\)
bài 2 : Tìm các số nguyên dương x,y,z thỏa mãn \(xz=y^2\)và \(x^2+z^2+99=7y^2\)
BÀi 3 : Tìm các số tự nhiên x,y thõa mãn \(x^2-5x+7=3^y\)
Tìm cặp số (x,y) thuộc Z. Thỏa mãn: x^4+x^2+y^2+x^2y^2-4x^2y=0