\(8x^2y^2+x^2+y^2-10xy=0\)
\(8x^2y^2-8xy+x^2-2xy+y^2=0\)
\(8x^2y^2-8xy+2+x^2-2xy+y^2=2\)
\(2\left(2xy-1\right)^2+\left(x-y\right)^2=2\) (*)
nếu \(\left(2xy-1\right)^2=0\) thì \(\left(x-y\right)^2=2\) ( không có nghiệm thỏa mãn )
nếu \(\left(2xy-1\right)^2=1\) thì \(\left(x-y\right)^2=0\)
Suy ra x - y = 0
x = y
\(\left(2xy-1\right)^2=1\)
\(2xy-1=\pm1\)
\(\orbr{\begin{cases}2xy-1=1\\2xy-1=-1\end{cases}}\)
\(\orbr{\begin{cases}2xy=1+1\\2xy=-1+1\end{cases}}\)
\(\orbr{\begin{cases}2xy=2\\2xy=0\end{cases}}\)
\(\orbr{\begin{cases}xy=1\Rightarrow x=y=\pm1\\xy=0\Rightarrow x=0;y=0\end{cases}}\)
Vậy có 3 tậm nghiệm thỏa đề bài là ( 0 ; 0 ) ( -1 : -1 ) ( 1 ; 1 )
Đưa phương trình về dạng phương trình bậc hai ẩn x, ta có:
\(\left(8y^2+1\right)x^2-10xy+y^2=0\left(1\right)\)
Phương trình (1) có \(\Delta=96y^2-32y^4=y^2\left(96-32y^2\right)\)
Để (1) có nghiệm thì \(\Delta=y^2\left(96-32y^2\right)\ge0\)và để (1) có nghiệm nguyên thì \(\Delta\)phải là số chính phương
\(\Leftrightarrow96-32y^2=k^2\left(k\inℤ\right)\)
Tìm được \(y^2\le3\)Do y nguyên nên y={-1;0;1}
-Với y=0 tìm được x=0
-Với y=-1 tìm được x=-1
-Với y=1 tìm được x=1
Vậy (x;y)=(0;0);(-1;-1);(1;1)