\(\left(y+2\right)x^{2017}-y^2-2y-1=0\)
\(\Leftrightarrow x^{2017}=\frac{y^2+2y+1}{y+2}\)
\(\Leftrightarrow x^{2017}=y+\frac{1}{y+2}\)
Để vế phải là số nguyên thì y+2 phải là ước của 1
\(\Leftrightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)
TH1: \(y=-3\Rightarrow x^{2017}=-4\)
Ta thấy x không phải là số nguyên
TH2: \(y=-1\Rightarrow x^{2017}=0\Rightarrow x=0\)
Vậy phương trình có cặp nghiệm (x,y) nguyên thỏa mãn là (0;-1)