B1 : Giai pt nghiệm nguyên :
a, y^3=x^3+2x^2+1 và xy=z^2+2
b, x^3-y^3-z^3=3xyz và x^2 = 2.(y+z) ( x,y,z nguyên dương )
c,x^3+y^3=3xy+3
d,x^4-x^2+2x+2=y^2
B2:a, Tìm các số nguyên dương tm : \(\frac{x-y.\sqrt{2011}}{y-z.\sqrt{2011}}\)là số hữu tỉ và x^2+y^2+z^2 là các sô nguyên tố
b, Tìm các số tự nhiên x,y : 2^x + 57 = y^2
Ai làm nhanh và đúng nhất mk sẽ cho 3 tick
Hạn ngày 17/11/2017
Với x, y là các sô nguyên dương thỏa mãn ( x^2 - 1 )/2=( y^2 - 1)/3 . Chứng minh rằng x^2 - y^2 :40
Tìm cặp sô nguyên (x,y) thỏa mãn : x3-2x2+3x=y3+1
Tìm nghiệm nguyên của phương trình:
\(x^3+x^2+x+1=2003^y\)
Tìm nghiệm nguyên của pt :
x3 + x2 + x +1 = 2003y
Tìm nghiệm nguyên của phương trình: \(x^3+x^2+x+1=2003^y\)
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
1. Tìm tất cả các số tự nhiên n sao cho: P = 1! + 2! + 3! + ... + n! là số chính phương
2. Chứng minh rằng với n là số nguyên dương bất kì thì:
\(A=1+\frac{1}{4}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1,65\)
3. Tìm tất cả các số tự nhiên không là tổng của 2 hợp số.
4. Tìm các số nguyên x,y thỏa mãn : \(\left(x+2003\right)\left(x+2005\right).4^y=3025\)