\(a)x+4⋮x+1\)
\(\Rightarrow x+1+3⋮x+1\)
Mà \(x+1⋮x+1\)
\(\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ(3)=\left\{\pm1;\pm3\right\}\)
Lập bảng :
x + 1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
a , (x-4) chia hết cho(x-1)
=>(x-1)-3 chia hết cho (x-1)
=>-3 chia hết cho(x-1) =>(x-1)e Ư(-3)
vì xe Z nên (x-1)eZ
Do đó(x-1)e{-3;-1;1;3}
=>xe{-2;0;1;3}.thử lại tháy thỏa mãn đề bài
vậy xe{-2;0;1;3)
\(b)x-2⋮x+1\)
\(\Rightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\)
\(\Rightarrow3⋮x+1\)
Tương tự như bài a
a) \(\left(x+4\right)⋮\left(x+1\right)\)
Ta có: \(x+1+3⋮x+1\)
Mà \(x+1⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)\RightarrowƯ\left(3\right)=\left\{1;3\right\}\)
Ta có:
+) x + 1 = 1 => x = 1 - 1 = 0
+) x + 1 = 3 => x = 3 - 1 = 2
=> x = 0; 2
a) x+4\(⋮\)x+1
Co : x+4= (x+1)+3\(⋮\)x+1
Ma x+1\(⋮\)x+1 => 3\(⋮\)x+1
=>x+1 la U(3)={1;3;-1;-3}
Ta co Bang
x+1 | -1 | 1 | 3 | -3 |
x | -2 | 0 | 2 | -4 |
Vay x\(\in\){-2;-4;0;2}
b) x-2\(⋮\)x+1
Co x-2= (x+1)-3 \(⋮\)x+1
Ma x+1 \(⋮\)x+1 => 3\(⋮\)x+1
Tuong tu phan a
\(\left(x+4\right)⋮\left(x+1\right)\)
Ta có: \(x+4=x+1+3⋮x+1\)
Mà:
\(x+1⋮x+1=>3⋮x+1\)
\(=>x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(=>x\in\left\{0;2;-2;-4\right\}\)