ta có : x^2−2y^2=1⇔x^2=2y^2+1x^2−2y^2=1⇔x2=2y2+1
vì 2y^2+12y^2+1 là số lẻ => x là số lẻ
đặt x=2k+1, ta có: (2k+1)^2−2y^2=1⇔4k2+4k+1−2y^2=1⇔4k2+4k−2y^2=0⇔2k2+2k−y^2=0⇔2(k2+k)=y^2(2k+1)^2−2y^2=1⇔4k2+4k+1−2y^2=1⇔4k2+4k−2y^2=0⇔2k2+2k−y^2=0⇔2(k2+k)=y^2 vì 2(k2+k)^2(k2+k) là số chẵn => y là số chẵn mà y là số nguyên tố =>y=2
thay y=2 vàox^2−2y^2=1x^2−2y^2=1, ta có:
x2−2.22=1⇔x^2=9⇒x=3x^2−2.22=1⇔x2=9⇒x=3(thõa mãn)
vậy x=3 và y=2
\(x^2-2y^2=1\)
nếu cả x và y đều lẻ => \(x^2-2y^2=\)số chẵn mà 1 là số lẻ nên trong x;y phải có 1 số là chẵn :
Nếu x là số nguyên tố chẵn => x=2
= \(4-2y^2=1\) ( loại )
Nếu y là số nguyên tố chẵn => y=2
=> \(x^2-2.2^2=1\)
\(x^2-8=1\)
\(x^2=9\)
\(x^2=3^2\)
=> x=3
Vậy x=3 ; y=2
nếu cả x và y đều lẻ => số chẵn mà 1 là số lẻ nên trong x;y phải có 1 số là chẵn :
Nếu x là số nguyên tố chẵn => x=2
= ( loại )
Nếu y là số nguyên tố chẵn => y=2
=>
=> x=3
Vậy x=3 ; y=2