Ta có : \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để P là một số nguyên
=> \(5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng sau
\(n-1\) | \(1\) | \(5\) | \(-5\) | \(-1\) |
\(n\) | \(2\) | \(6\) | \(0\) | \(-4\) |
Vậy để P là số nguyên thì \(n\in\left(2;6;0;-4\right)\)