Ta có:
\(2n^3+n^2+7n+1⋮2n-1\)
\(\Rightarrow2n^3-n^2+2n^2-n+8n-4+5⋮2n-1\)
\(\Rightarrow\left(2n-1\right)\left(n^2+n+4\right)+5⋮2n-1\)
\(\Rightarrow5⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(5\right)=1;-1;5;-5\)
Với:
\(2n-1=1\Rightarrow2n=2\Rightarrow n=1\)
\(2n-1=-1\Rightarrow2n=0\Rightarrow n=0\)
\(2n-1=5\Rightarrow2n=6\Rightarrow n=3\)
\(2n-1=-5\Rightarrow2n=-4\Rightarrow n=-2\)
Vậy \(n=1;0;3;-2\)