Lời giải:
Ta có: a2b+a+b⋮ab2+b+7
⇒a2b2+ab+b2⋮ab2+b+7
⇔a(ab2+b+7)+b2−7a⋮ab2+b+7
⇔b2−7a⋮ab2+b+7
Ta xét các TH sau:
TH1: b2=7a→b⋮7→b=7t , khi đó a=7t2
Thay vào điều kiện ban đầu ta thấy luôn đúng.
TH2: b2−7a>0⇒b2−7a≥ab2+b+7
Vì a∈Z+⇒a≥1⇒ab2+b+7+7a>b2 (vô lý)
TH3: 7a−b2>0⇒7a−b2≥ab2+b+7
Để thỏa mãn điều kiện trên thì ít nhất b2<7⇔b∈{1;2}
Thay từng giá trị b vào điều kiện ban đầu ta thu được các cặp (a,b) thỏa mãn là: (11,1),(49,1)