Tìm các phân số theo thứ tự bàng các phân số \(\frac{6}{10};\frac{44}{77};\frac{30}{55}\) sao cho mẫu của phân số thứ nhất bằng tử của phân số thứ hai,mẫu của phân số thứ hai bằng tử của phân số thứ ba.
Tìm các số tự nhiên a,b,c,d nhỏ nhất sao cho \(\frac{a}{b}=\frac{3}{5}\); \(\frac{b}{c}=\frac{12}{21}\); \(\frac{c}{d}=\frac{6}{11}\)
tìm số tự nhiên a, b, c,d nhỏ nhất sao cho :\(\frac{a}{b}=\frac{5}{3};\frac{b}{c}=\frac{12}{21};\frac{c}{d}=\frac{6}{11}\)
Tìm số tự nhiên a, b, c, d nhỏ nhất sao cho: \(\frac{a}{b}=\frac{5}{3};\frac{b}{c}=\frac{12}{21};\frac{c}{d}=\frac{6}{11}\)
1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)
2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)
3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)
4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)
7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên
8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)
a) Tìm số nguyên \(n\)để \(A\)là phân số
b) Tìm số nguyên \(n\)để \(A\)là số nguyên
9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên
10. Tìm tập hợp các số nguyên \(a\)là bội của 3:
\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)
cho các số nguyên dương a,b,c,d . Chứng tỏ rằng :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho a,b,c là số nguyên dương
Tính:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Biết:\(a+b+c=2018\)
Biết:\(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{6}{2018}\)
Giúp mình với ạ, xin cảm ơn các bạn rất nhiều!
1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)
2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)
3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:
Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản
b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)
4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)
5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên
6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản
7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)
8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)
9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)
10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau
Bài 1: Cho a,b,c là số nguyên dương. Chứng tỏ s không là số tự nhiên :
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Bài 2 : Tìm các số tự nhiên a,b,c sao cho:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)