Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Hoàng Hải

Tim cac so nguyen a,b,c khac 0 , biet : a.b=c.b.c=4.a va a.c = 9b

๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
22 tháng 5 2020 lúc 13:51

Điều kiện : \(\hept{\begin{cases}a\ne0\\b\ne0\\c\ne0\end{cases}}\)

Nháp : 

Đề bài đã cho :  \(ab=cbc=4a\Leftrightarrow ab=c^2b=4a\)

và \(ac=9b\)

Theo bài ra ta có : \(ab=c^2b=4a\Leftrightarrow\hept{\begin{cases}ab=4a\left(1\right)\\c^2b=4a\left(2\right)\end{cases}}\)Dễ dàng nhìn được : (1) có ab = 4a => b = 4 

Mà : \(ac=9b\)nên \(\Rightarrow ac=9.4\)

Suy ra  : \(\left\{a;c\right\}=\left\{9;4\right\}\)hoặc \(\left\{a;c\right\}=\left\{4;9\right\}\)

Vậy : \(\left\{a;b;c\right\}=\left\{9;4;4\right\}or\left\{4;9;4\right\}\)

Đoán bừa đó :3

Khách vãng lai đã xóa
Quỳnh
22 tháng 5 2020 lúc 18:03

Bài làm

Ta có: a . b = c 

=> \(a=\frac{c}{b}\)

Lại có: b . c = 4a

=> \(a=\frac{b.c}{4}\)

=> \(\frac{c}{b}=\frac{bc}{4}\)

\(\Rightarrow\frac{c}{bc}=\frac{b}{4}\)

\(\Rightarrow\frac{1}{b}=\frac{b}{4}\)

\(\Rightarrow b.b=4\)

\(\Rightarrow b^2=(\pm2)^2\)

\(\Rightarrow b=\pm2\)    ( thỏa mãn )

Xét trường hợp 1: b = -2

Thay b = -2 vào \(a=\frac{c}{b}\)ta được:

\(a=\frac{c}{-2}\Rightarrow-2a=c\)

Vì ac = 9b 

Ta thay b = -2 và -2a = c vào ac = 9b  ta được:

a. ( -2a ) = 9 . ( -2 )

=> -2a2 = -18

=> a2 = 9

=> a = + 3 ( thỏa mãn )

+) Với a = 3, b = -2 thfi ta được: a . b = c

=> 3 . ( -2 ) = c

=> c = -6 ( thỏa mãn )

+) Với a = -3, b = -2 thì ta được: a . b = c

=> -3 . ( -2 ) = c

=> x = 6 ( thỏa mãn )

Xét trường hợp 2: b = 2

Thay b = 2 vào \(a=\frac{c}{b}\)ta được: 

=> \(a=\frac{c}{2}\Rightarrow2a=c\)

Ta có: a . c = 9b

Thay 2a = c vào a . c = 9b, ta được:

a . 2a = 9 . 2

=> 2a2 = 18

=> a2 = 9

=> a = + 3

+)Thay a = 3 vào 2a = c, ta được:

2 . 3 = c

=> c = 6 ( thỏa mãn )

+) Thay a = -3 vào 2a = c, ta được: 

2 . ( - 3 ) = c

=> c = -6 ( thỏa mãn )

Vậy ta có các cặp a,b,c lần lượt như sau: (  3; 2; 6 ); ( -3; -2; 6 ); ( 3; -2; 6 ); ( -3; 2; -6 ) 

Khách vãng lai đã xóa

Các câu hỏi tương tự
Minh Hiền
Xem chi tiết
Do Thu Huong
Xem chi tiết
nguyễn minh châu
Xem chi tiết
vuduongthaochi
Xem chi tiết
Tran Gia Dinh
Xem chi tiết
Fenny
Xem chi tiết
dương huyền trang
Xem chi tiết
Lê Bá Khánh Linh
Xem chi tiết
nguyen phuong quynh
Xem chi tiết