\(\frac{a}{7}=\frac{1}{b+3}+\frac{1}{2}=\frac{2+b+3}{2b+6}=\frac{b+5}{2b+6}\)
\(\Rightarrow a=\frac{7b+35}{2b+6}\)
\(\frac{a}{7}=\frac{1}{b+3}+\frac{1}{2}=\frac{2+b+3}{2b+6}=\frac{b+5}{2b+6}\)
\(\Rightarrow a=\frac{7b+35}{2b+6}\)
Tìm các số nguyên a;b biết rằng \(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+3}\)
Tìm các số nguyên a ; b biết rằng \(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)
Tìm các số nguyên a,b biết rằng :
\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+3}\)
Giải chi tiết giúp mình nhé ^.^
Tìm stn n biết rằng khi chia 147 và 193 cho n thì có số dư lần lượt là 17, 11
Khi công vào cả tử và mẫu của p/s \(\frac{3}{7}\) với cùng 1 số nguyên x thì được p/s mới = 1/3. tìm số nguyên x
Cho a;b;c là các số nguyên dương . CM rằng P=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là một số nguyên
Tìm các số nguyên x,y biết:
a)\(\frac{x-1}{-3}=\frac{4}{7}\)
b)\(\frac{2}{x}=\frac{y+1}{-9}\)
2 số nguyên a và b biết rằng: \(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)
Bài 1:Tìm 2 số tự nhiên a và b biết tổng UCLN và BCNN của chúng là 15
Bài 2;Tìm x biết: 1) \(-\frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{1}{3}\left(2x-1\right)\)
2)\(\frac{1}{5}.2^x+\frac{1}{3}.2^{x+1}=\frac{1}{5}.2^7+\frac{1}{3}.2^8\)
Bài 3:Tìm các số nguyên n sao cho: \(^{n^2+5n+9}\)là bội của n+3
Bài 4:Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Bài 5:Tìm x nguyên thỏa mãn:|x+1|+|x-2|+|x+7|=5x-10
Bài 6;Tìm 3 số có tổng bằng 210, biết rằng 6/7 ST1 bằng 9/11 ST2 và 9/11 ST2 bằng 2/3 ST3
Bài 7: Tìm 2 số biết tỉ số của chứng bằng 5:8 và tích của chứng bằng 360
a) Chứng Minh Rằng : E = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< 1\)
b) Tìm Các Số Nguyên n để : \(\frac{2n-1}{n+8}-\frac{n-14}{n+8}\)Là Số Nguyên
Tìm các số tự nhiên a và b biết rằng:
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\left(b-a=2\right)\)