Đk:\(x\ge3;y\ge2021\)
\(A=x+y-\sqrt{x-3}.\sqrt{y-2021}\)
\(\Leftrightarrow A=\left(x-3\right)-\sqrt{x-3}.\sqrt{y-2021}+\dfrac{1}{4}\left(y-2021\right)+\dfrac{3}{4}\left(y-2021\right)+2024\)
\(\Leftrightarrow A=\left(\sqrt{x-3}-\dfrac{1}{2}\sqrt{y-2021}\right)^2+\dfrac{3}{4}\left(y-2021\right)+2024\ge2024\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y-2021=0\\\sqrt{x-3}-\dfrac{1}{2}\sqrt{y-2021}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=2021\\x=3\end{matrix}\right.\) (tm)
Vậy...