Có :
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
\(\Rightarrow x,y,z\)cùng dấu
Lại có : \(\Rightarrow\frac{x^2}{36}=\frac{y^2}{225}=\frac{z^2}{16}=\left(\frac{x}{6}\right)\left(\frac{y}{15}\right)=\frac{xy}{6.15}=\frac{90}{90}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\frac{y^2}{225}=1\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{16}=1\Rightarrow z^2=16\Rightarrow\orbr{\begin{cases}z=4\\z=-4\end{cases}}\)
Mà \(x,y,z\)cùng dấu
\(\Rightarrow\orbr{\begin{cases}x=6;y=15;z=4\\x=-6;y=-15;z=-4\end{cases}}\)
Vậy ...
Giải:
Ta có: 5x = 2y => x/2 = y/5 => x/6 = y/15
2x = 3z => x/3 = z/2 => x/6 = z/4
=> x/6 = y/15 = z/4
Đặt x/6 = y/15 = z/4 = k
=> x = 6k, y = 15k, z = 4k
Mà xy = 90
=> 6.k.15.k = 90
=> 90.k2 = 90
=> k2 = 1
=> k = 1 hoặc k = -1
+) k = 1 => x = 6, y = 15, z = 4
+) k = -1 => x = -6, y = -15, z = -4
Vậy x = 6, y = 15, z = 4 hoặc x = -6, y = -15, z = -4
câu trả lời rất dễ : do la mot so tu 0 den 100000000000000000000000000000000000000000000
Tiếp.
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow x,y,z\)cùng dấu
Lại có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có :
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=-\frac{20}{-80}=\frac{1}{4}\)
\(\frac{x^2}{64}=\frac{1}{4}\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\frac{y^2}{144}=\frac{1}{4}\Rightarrow y^2=36\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
\(\frac{z^2}{225}=\frac{1}{4}\Rightarrow z^2=\frac{225}{4}\Rightarrow\orbr{\begin{cases}z=\frac{15}{2}\\z=-\frac{15}{2}\end{cases}}\)
Mà \(x,y,z\)cùng dấu
\(\Rightarrow\left(x;y;z\right)\in\left\{\left(4;6;\frac{15}{4}\right);\left(-4;-6;-\frac{15}{4}\right)\right\}\)
Vậy ...