Ta có : 3x^2+14y^2+13xy=330
(=) x2 +14/3y2+13/3xy=110
(=) x2+2.13/6xy+169/36y2-169/36y2+14/3y2=110
=> (x+13/6y)2 -1/36y^2=110
(=) (x+13/6y-1/6y)(x+13/6y+1/6y)=110
=)(x+2y)(x+7/3y)=2.5.11=10.11=11.10=22.5=5.22=55.2=2.55
=> x=4;y=3
Ta có : 3x^2+14y^2+13xy=330
(=) x2 +14/3y2+13/3xy=110
(=) x2+2.13/6xy+169/36y2-169/36y2+14/3y2=110
=> (x+13/6y)2 -1/36y^2=110
(=) (x+13/6y-1/6y)(x+13/6y+1/6y)=110
=)(x+2y)(x+7/3y)=2.5.11=10.11=11.10=22.5=5.22=55.2=2.55
=> x=4;y=3
Tìm tất cả các nghiệm nguyên dương của phương trình \(\left(x+y\right)^2+y+3x=z^2+1\)
Tìm các cặp số (x; y) nguyên dương là nghiệm đúng của phương trình:
\(3x^5-19\left(72x-y\right)^2=240677\)
Tìm nghiệm nguyên dương của phương trình: \(2\left(x^2+y^2\right)=6y-3x+5xy-7\)
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Cho phương trình 3x+19=y2 với x, y là các số nguyên dương
a, Tìm cặp (x;y) là nghiệm của phương trình mà x là số nguyên nhỏ nhất
b,Chứng minh rằng phương trình có nghiệm duy nhất
Cho phương trình 3x+19=y2 với x, y là các số nguyên dương
a, Tìm cặp (x;y) là nghiệm của phương trình mà x là số nguyên nhỏ nhất
b,Chứng minh rằng phương trình có nghiệm duy nhất
tìm tất cả các nghiệm nguyên dương của phương trình 2x2y-1=x2+3y
tìm các nghiệm nguyên dương của phương trình: \(x^2\left(y+3\right)=y\left(x^2-3\right)^2\)
tìm nghiệm nguyên dương của phương trình x^3 - y^ = 95(x^2 + y^2)