Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4Nếu n-1=-1 => n=0Nếu n-1=1 => n=2Nếu n-1=5 => n=6Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4Nếu n-1=-1 => n=0Nếu n-1=1 => n=2Nếu n-1=5 => n=6Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1)là 1 số nguyên: \(\Rightarrow\) 3n+2chia hết cho n-1 \(\Rightarrow\) (3n-3)+3+2chia hết cho n-1 \(\Rightarrow\) 3(n-1)+5chia hết cho n-1 vì 3(n-1) chia hết cho n-1 nên 5 cũng chia hết cho n-1 \(\Rightarrow\)n-1 thuộc Ư(5)={+-1;+-5}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
:D
là vì 3n+2 = 3n-3+2+3
bên 3n+ 2 là có +2 ở cuối còn -3+3+2 k/q = -2
đây là một cách để biến đổi 3n+2 chia hết cho n-1 đâý
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
Sao dài dòng thế.Đây này
3n+2/n-1=3(n-1)+5/n-1=3n-1/n-1+5/n-1
=3+5/n-1
Để A có giá trị nguyên thì 5 chia hết cho n-1
Suy ra n-1 thuộc Ư 5={+-1;+-5}
n-1 =+1;-1;5;-5
n=0;2;6;-4
Vậy...
Câu trả lời:
Để \(\frac{2n+5}{n+3}\)có giá trị là nguyên thì \(2n+5⋮n+3\)
Vì \(2n+5⋮n+3\)
nên\(n+3⋮n+3\)
=> \(2\left(n+3\right)⋮n+3\)
=\(2n+6⋮n+3\)
=>\(\left(2n+5\right)-\left(2n+6\right)⋮n+3\)
=\(-1⋮n+3\)
=>\(n+3\inƯ\left(-1\right)\)=\(\left\{1;-1\right\}\)
\(n+3=1\)=>\(n=1-3=-2\)
\(n+3=-1\)=>\(n=\left(-1\right)-3=\left(-1\right)+\left(-3\right)=\left(-4\right)\)
Vậy \(n\in\left\{-2;-4\right\}\)thì phân số \(\frac{2n+5}{n+3}\)có giá trị nguyên
Thân!
giải giúp mình để 3/n+1 là số nguyên