\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)
Ta có:
\(\frac{1.\sqrt{2y-1}}{y}+\frac{1.\sqrt{2x-1}}{x}\le\frac{1}{2}\left(\frac{1+2y-1}{y}+\frac{1+2x-1}{x}\right)=2\)
Đẳng thức xảy ra nên:
\(\left\{{}\begin{matrix}\sqrt{2y-1}=1\\\sqrt{2x-1}=1\end{matrix}\right.\) \(\Leftrightarrow x=y=1\)